
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 27, 139±157 (1998)

LINEAR STABILITY OF INCOMPRESSIBLE FLUID FLOW IN A

CAVITY USING FINITE ELEMENT METHOD

YAN DING AND MUTSUTO KAWAHARA*

Department of Civil Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112, Japan

SUMMARY

Numerical methods have been applied to theoretical studies of instability and transition to turbulence. In this
study an analysis of the linear stability of incompressible ¯ow is undertaken. By means of the ®nite element
method the two-dimensional base ¯ow is computed numerically over a range of Reynolds numbers and is
perturbed with three-dimensional disturbances. The partial differential equations governing the evolution of
perturbation are obtained from the non-linear Navier±Stokes equations with a slight compressibility by using
linear stability and normal mode analysis. In terms of the ®nite element discretization a non-singular generalized
eigenproblem is formulated from these equations whose solution gives the dispersion relation between complex
growth rate and wave number. This study presents stability curves to identify the critical Reynolds number and
critical wavelength of the neutral mode and discusses the mechanism of instability. The stability of lid-driven
cavity ¯ow is examined. Taylor±GoÈertler-like vortices in the cavity are obtained by means of reconstruction of
three-dimensional ¯ows. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The transition of ¯uid ¯ow is a very complicated phenomenon which can be characterized only by

means of many parameters, of which the Reynolds number Re is the most important. The stability of

parallel ¯ows such as plane Poiseuille and boundary layer ¯ows, owing to the similarity of velocity

pro®le in the streamwise direction, can be described by the Orr±Sommerfeld equation, which is at

least a fourth-order ordinary differential equation. The neutral curve can be identi®ed from the spatial

modes or=and temporal modes by means of calculation of a generalized eigenproblem. The

calculation of this eigenproblem is very complex even for the simplest canonical ¯ows.1

Numerical methods have been applied to theoretical studies of instability and transition to

turbulence since shortly after the advent of digital computers. A rationally asymptotic framework was

developed for treating the linear and weakly non-linear stability of non-parallel ¯ows by means of

®nite difference and spectral methods.2,3 The linear theory is applicable to some transition problems

and describes the ®rst stage of transitionÐthe (usually) slow growth of the primary instability. By

means of three-dimensional disturbances on the primary instability wave the secondary instability can
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also be analysed by a variety of numerical methods.

Kleiser and Zang4 have reviewed the discretization in space and time of the Navier±Stokes

equations by using ®nite difference, spectral and=or spectral domain decomposition methods. The

precise choice of discretization in space is primarily a matter of ef®ciency and convenience.

However, the numerical methods mentioned above are limited to quite simple geometries.5±7 Using

®nite difference methods, a co-ordinate transformation is necessary in order to simulate even simple

geometries such as the ¯ow around a cylinder.8,9 In contrast, using the ®nite element method,

complex geometries can be described exactly and effectively.10,11 Li and Kot,10 like earlier

practitioners, have analysed one-dimensional Poiseuille ¯ow by the ®nite element method with

Hermitian interpolation. Jackson11 has discussed in detail the onset of vortex shedding in ¯ow past

variously shaped bodies by Newton±Raphson iteration. However, the matters of common concern are

the accuracy, ef®ciency and convenience of various numerical methods.

The purpose of this study is to analyse the linear stability of incompressible ¯ow by employing the

®nite element method, owing to the advantages of convenience and accuracy in the simulation of

¯ows with complex geometries. As an example we focus on the linear stability of lid-driven cavity

¯ow in which three-dimensional disturbances are allowed for. The main assumption of this study is

that the cavity is of in®nite axial extent, which allows for the eigenproblem to be decomposed into

normal modes in the spanwise direction. To overcome the singularity of the eigenproblem in the

linear analysis of incompressible ¯ows,12 we further employ a slight compressibility to eliminate the

singularity. In addition, Khorrami et al.6 stated that the effect on the desired (physical) eigenvalues

was negligible. Ramanan and Homsy2 have reviewed cavity ¯ow from experimental and numerical

studies. The main conclusion can be summarized by the following observation. It appears that the

¯ow is most de®nitely two-dimensional below Re� 500. At some critical Reynolds number below

1000 there is a transition to a secondary state. Reliable experimental results are provided by Aidun et

al.13 in this range of Reynolds numbers. For our study the basic two-dimensional lid-driven cavity

¯ow is computed by means of an improved velocity correction method whereby the continuity

constraint can be satis®ed perfectly.14

2. MATHEMATICAL FORMULATIONS

There are two routes to drive the mathematical formulations for the analysis of stability in

incompressible ¯uid ¯ows. One way is to form the non-linear Navier±Stokes equations with the

continuity constraint.2,12 Owing to this constraint, a singular eigenproblem results. Therefore, in

general, de®nite potential functions are adopted to force the velocity ®eld to be solenoidal and

automatically satisfy the continuity equation.15 This will result in a coupled set of fourth-order partial

differential equations for the potentials.2 Therefore, using the ®nite element discretization, the

Hermitian interpolation function is needed at least, which implies that the total number of degrees of

freedom will double. Thus this technique is inconvenient and time-consuming for the solution of such

linear algebraic equations derived from the FEM.

Another method is to write the governing equations in primitive variable form in order to utilize

the Lagrangian interpolation function for the ®nite element discretization. This will keep the linear

algebraic system within the appropriate momory size. In this study we adopt this latter technique to

form the discretized system by the FEM with a slight compressibility so as to eliminate the

singularity in the eigenproblem.
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2.1. Formulations

We consider lid-driven cavity ¯ow in a cavity that is in®nitely long in the spanwise direction, in

which the motion of the ¯uid is driven by the top boundary moving at constant speed V0, with width

and height L. Let us assume that the ¯uid is slightly compressible, isothermal and Newtonian. In

addition, the non-dimensional scales for length, velocity, time and pressure are L, V0, L=V0 and CV0

respectively, where C is the acoustic speed in the ¯uid. The dimensionless form of the continuity

equation for Newtonian ¯uid ¯ow is

Dr
Dt
� rH � v � 0 in O; �1�

where D=Dt denotes mass differentiation with respect to dimensionless time. Owing to the slight

compressibility, given the pressure only as a function of density, for the kinematic pressure we have

Dp

Dr
� 1

r
1

Ma

Dr
Dt
; �2�

where Ma � V0=C is the Mach number in the ¯uid. Substituting (2) into (1), the modi®ed continuity

equation with the slight compressibility assumption can be written as

Dp

Dt
� 1

Ma
H � v � 0: �3�

To derive the equation of motion, we consider the constitutive relation of the Newtonian ¯uid with

the Stokes hypothesis as (in indicial form)

tij � ÿ
1

Ma
pdij � 2Reÿ1 Sij ÿ

1

3

@ui

@xi

dij

� �
; �4�

where Re � rV0L=m is the Reynolds number in the cavity ¯ow, with m the viscosity of the ¯uid, and

Sij �
1

2

@ui

@xj

� @uj

@xi

 !
: �5�

Under the condition of slight compressibility, considering the viscosity m of the ¯uid as constant, the

non-dimensional momentum equations can be written as

Dv

Dt
� ÿ 1

Ma
Hp� 1

Re
�H2v� 1

3
H�H � v��: �6�

We have G � GN [ GS, where GS denotes the wall boundaries and GN denotes the moving boundary

at the top of the cavity. No-slip conditions are imposed on all wall boundaries. On the top the

boundary conditions are

ui � 1 on GN; �7�
tij � n � 0 on GN: �8�
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2.2. Base ¯ow

As the cavity is assumed to be in®nitely long in the spanwise direction, the base ¯ow whose

stability is being examined is two-dimensional and steady, with the result that the equations for this

¯ow simplify to

H � V � 0 in O; �9�
V � H�V � ÿH�P �

1

Re
H2
�V in O; �10�

where V and P are the velocity and kinematic pressure in the base ¯ow respectively and H� represents

the two-dimensional gradient operator.

2.3. Perturbation equations

To investigate the stability of the base ¯ow to disturbances, we need the equations that govern the

evolution of these perturbations. To this end we perturb the base ¯ow by a disturbance velocity v0 and

the pressure by p0. The total velocity and pressure are then written as

v � V� v0; p � P � p0: �11�
Substituting (11) into the continuity equation (1) and the equation of motion (6), subtracting the base

¯ow equations (9) and (10) and linearizing, we obtain the following equations for the perturbation

velocity subject to no-slip conditions on all boundaries:

p0-equation

Dp0

Dt
� �v0 � H�P � 1

Ma
H � v0 � 0 in O; �12�

v0-equations

Dv0

Dt
� �v0 � H�V � ÿ 1

Ma
Hp0 � 1

Re
�H2v0 � 1

3
H�H � v0�� in O; �13�

where the two-dimensional operator D=Dt � @=@t � V � H�. The boundary conditions of the

perturbances are

v0 � 0 on G; �14�

ÿ 1

Ma
p0dij �

1

Re

@u0i
@xj

� 1

3

@u0j
@xj

dij

 ! !
� nj � 0 on GN: �15�

In terms of the normal mode we represent the disturbances of pressure and velocities in the symmetry

plane and spanwise direction of the cavity as

p0 � ip̂�x; y�eikz�ot; �16�
u0 � iû�x; y�eikz�ot; �17�
v0 � iv̂�x; y�eikz�ot; �18�
w0 � ŵ�x; y�eikz�ot; �19�

where k is the spanwise wave number and o is the complex growth rate. The reason for the choice of

the imaginary amplitude in normal modes is to avoid complex arithmetic in the subsequent
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calculation of the eigenproblem. The assumed form of the eigenvector is completely general and

allows for both steady and oscillatory modes, depending on whether the eigenvalue o is real or

complex respectively. According to linear stability theory, if o is real, the disturbances either grow or

decay monotonically; the critical Reynolds number is that for which o� 0. If o is complex, the

neutral condition is or� 0 and the onset of instability is oscillatory with dimensional wave speed oi.

This normal mode form also includes the time-dependent two-dimensional instability of the steady

¯ow for which k� 0. Substituting these normal modes into (12) and (13) yields an eigenproblem with

the growth rate being the eigenvalue:

op̂� �V � H��p̂� �v̂ � H��P �Mÿ1
a �H� � v̂� kŵ� � 0; �20�

oû� �V � H��û� �v̂ � H��U �Mÿ1
a

@p̂

@x
� Reÿ1 H2

�ûÿ k2û� 1

3

@

@x
�H� � v̂� kŵ�

� �
; �21�

ov̂� �V � H��v̂� �v̂ � H��V �Mÿ1
a

@p̂

@y
� Reÿ1 H2

�v̂ÿ k2v̂� 1

3

@

@y
�H� � v̂� kŵ�

� �
; �22�

oŵ� �V � H��ŵÿMÿ1
a kp̂ � Reÿ1�H2

�ŵÿ k2ŵÿ 1
3
k�H� � v̂� kŵ��; �23�

subject to no-slip conditions on all boundaries, i.e.

û � v̂ � ŵ � 0 on G; �24�
and the stress condition

ÿ 1

Ma
p̂dij �

1

Re

@ûi

@xj

� 1

3

@ûj

@xj

dij

 ! !
� nj � 0 on GN: �25�

2.4. Finite element formulations

For the discretization of (20)±(23) by means of the ®nite element method the interpolations for

velocity and pressure eigenfunctions can be expressed as

v̂ � Fav̂a; �26�
p̂ � Fap̂a; �27�

where Fa is the interpolation function and v̂a and p̂a represent the nodal values at the ath node of

®nite elements. The corresponding weighting functions are similar to (26) and (27). In our cases the

linear interpolation function based on the linear triangular element for eigenfunctions is employed.

After the superposition of element matrices the temporal mode of stability is expressed as the

generalized eigenproblem

AF � oBF; �28�
where B is the assembling consistent mass matrix and F � f û; v̂; ŵ; p̂gT is the assembling vector of

eigenfunctions. If N is the total number of nodal points and Nb is the number of nodal points on all no-

slip boundaries, the dimensions of the square matrices A and B can be reduced to 4(N7Nb) through

column operations. This indicates that the ranks of A and B are 4(N7Nb).

3. NUMERICAL METHODS

In this section the numerical methods used to compute the base ¯ow and solve the eigenproblem for

the identi®cation of the critical state are described.
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3.1. Base ¯ow computations

The evaluation of two-dimensional base ¯ows is performed using the improved velocity correction

method with the continuity constraint by means of the ®nite element method.14 Such methods based

on the fractional step scheme have been investigated widely; see Reference 16 for the ®nite

difference method and References 17 and 18 for the ®nite element method. The results from various

numerical methods for two-dimensional cavity ¯ow show good accuracy in comparison with the

experimental data. After numerical experiments to determine the appropriate grid size, we found that

at the lower Reynolds numbers (i.e. below Re� 300) a 33633 grid was adequate for obtaining grid-

invariant results and for the higher Reynolds numbers a ®ner 81681 grid was necessary. For the sake

of computational simplicity an 81681 non-uniform grid is used for the simulation of steady ¯ows in

all cases. Details of the solution methodology for a related problem have been reported elsewhere.14

Figure 1(a) shows the ¯ow structure at Re� 1000, which consists of a primary vortex, secondary

vortices at the bottom corners and an incipient vortex at the upper left-hand corner. Figure 1(b)

presents the steady distribution of pressure at this Reynolds number.

The ¯uid is considered as water in this case. The base ¯ows were computed by double-precision

arithmetic at discrete values of Re of 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1020,

1030, 1050, 1100, 1200 and 1500 on grids as ®ne as 81681.

3.2. Solution of eigenproblem

In the generalized eigenproblem (28) the eigenvalue pencil of the real unsymmetric matrix

contains real values and complex conjugate pairs. To detect the onset of instability, we need to

identify the eigenvalues closest to the imaginary axis. The leading or dominant eigenvalues that we

seek are those with maximum real part. In this subsection we will discuss brie¯y the traditional QR

method and Arnoldi's method with the `shift and invert' strategy.

Figure 1. 2D steady ¯ow at Re� 1000
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3.2.1. QR method. Although the QR method is very expensive for the computation of all

eigenvalues, it is effective and accurate for the detection of eigenvalues in an unsymmetric

eigenproblem. In particular, for (28) in our case the matrix A has a large condition number and is a

ill-conditioned matrix. Thus it is reasonable to use the QR method to detect an eigenspectrum in

advance so as to recognize the basic characteristics of eigenproblem (28) subject to the slight

compressibility assumption.

As the matrix B in (28) is symmetric and positive de®nite, before calculating the spectrum in (28),

this problem is most ef®ciently solved by reduction to a standard eigenproblem by Cholesky

factorization of B� LTL. Thus one can obtain the standard eigenproblem

Hz � oz; with z � LF; �29�
where H � LÿTALÿ1 is a transformed matrix of A; see Reference 19 for a detailed description of this

transformation.

3.2.2. Arnoldi's method with `shift and invert' strategy. For the standard eigenvalue problem

CF � oF, in order to compute the dominant eigenvalue o1 of C �jo1j > jojj for j � 2; . . . ;N ), a

brief description of Arnoldi's method is as follows.20,21

Arnoldi's algorithm as a puri®cation process

1. Start. Choose an initial vector v1 of unity norm and a number of steps m.

2. Iterate. For j � 1; 2; . . . ;m do

v̂j�1 � Cvj ÿ
Pj

i�1

hijvi; �30�

with

hij � �Cvj; vi�; i � 1; . . . ; j; �31�
hj�1; j � kv̂j�1k; �32�
vj�1 � v̂j�1=hj�1; j: �33�

This algorithm produces an orthonormal basis Vm � �v1; v2; . . . ; vm� of the Krylov subspace

Km � spanfv1;Cv1; . . . ;Cmÿ1v1g. In this basis the restriction of C to Km is represented by the upper

Hessenberg matrix Hm whose entries are the hij produced by the algorithm, i.e.

Hm � fhijg: �34�
The eigenvalues of C are approximated by those of Hm, which is such that

Hm � VT
mCVm: �35�

The associated approximate eigenvectors are given by

~Fi � Vm ~yi; �36�
where ~yi is an eigenvector of Hm associated with the eigenvalue ~oi. Note that ~Fi has the same

Euclidean norm as ~yi. The following relation is extremely useful for obtaining the residual norm of ~Fi

without computing it explicitly:

k�Cÿ ~oiI � ~Fik2 � hm�1;mjeT
m ~yij; �37�

in which em � �0; 0; . . . ; 0; 1�T.
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Shift and invert for (28)

In order to ®nd the leading eigenvalue with maximum real part, one can use the `shift and invert'

strategy.22 If o0 is an approximation to an eigenvalue of interest, the shifted and inverted

eigenproblem is

�Cÿ o0I �ÿ1F � lF; �38�
where l � 1=�oÿ o0�. In order to apply Arnoldi's method to (38) for the generalized eigenproblem

(28), we do not wish to form C � Bÿ1A. Rather, (38) may be written as

�Aÿ o0B�ÿ1BF � lF: �39�
Thus we need to solve a linear algebraic equation at each Arnoldi step as

�Aÿ o0B�wj � Bvj �j � 2; 3; . . . ;m�: �40�
Because of the ill-conditioned matrix A, we choose two strategies to solve the above equation. One

approach is to form the inverse matrix �Aÿ o0B�ÿ1 only once in Arnoldi's iteration. Another is to

solve it by a direct solver such as LU decomposition with partial pivoting. However, the eigenvalues

obtained by the latter method show that the condition number of A is so large that the eigenspectrum

is seriously distorted; in addition, the shifted value o0 should be chosen very small so as to avoid the

distortion of eigenvalues. Therefore it follows that only the direct inverse matrix solver and puri®ed

inverse process are effective for our eigenproblem (28).

4. NUMERICAL RESULTS FOR CAVITY FLOW

In this section we present our results for driven cavity ¯ow. As mentioned above, the base ¯ows were

computed as a discrete series and used for stability computation. Since the computed ¯uid is water as

stated above, in the computation of the eigenproblem we considered this ¯uid with a physical

compressibility where the acoustic speed was chosen as 1449�36 m sÿ1 in correspondence with the

general situation of a ¯uid at a temperature of 10�0 �C. Therefore the range of Mach numbers is from

4�5610ÿ7 to 1�4610ÿ5. This means that the slight compressibility assumption possesses a physical

character in our cases, in contrast with the choice of an arti®cial compressibility parameter by Malik

and Poll5 and Khorrami et al.6 For the calculation of eigenvalues, owing to the memory limitation of

our computer, we performed grid convergence tests on grids from 11611 to 21621. We found that

for the lower Reynolds numbers a 21621 non-uniform grid was adequate for obtaining grid-invariant

results.

4.1. Comparison of results from QR and Arnoldi methods

We ®rst computed a spectrum of cavity ¯ow at Re� 50 by means of the QR method and found an

approximated one at the same Reynolds number by the inverted Arnoldi method with step m� 60.

The CPU time on an IBM RS=6000 is 235 min for computation by the QR method but only 200 s for

that by Arnoldi's method with m� 60. Thus we can say that Arnoldi's method is much more effective

than the QR method despite the adoption of a direct inverse matrix solver in Arnoldi's method.

Figure 2 shows the distribution of spectra from the two methods. The leading part of the

approximated spectrum is in good agreement with that part by the QR method. In order to obtain an

adequate number of Arnoldi steps, we compare the residual norm of spectra in Figure 3 for Re� 400

with k� 2 from m� 20 to 60. It follows that the residual norm of leading eigenvalues can be kept in

the range from 10ÿ16 to 10ÿ18. If one speci®es the criteria that the norm is less than 10ÿ10 and only

three leading eigenvalues are necessary, an adequate number of Arnoldi steps will be no more than
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30. This means that only 150 s of CPU time is needed to obtain the eigenvalues and corresponding

eigenfunctions of interest.

4.2. Validation of stability results

In order to validate the stability result with three-dimensional perturbation by means of the

inverted Arnoldi method, we compared it with that of Ramanan and Homsy2 in which the

Figure 2. Comparison of eigenvalue distribution at Re� 50 and k� 2

Figure 3. Convergence of Arnoldi's method at various steps
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perturbation equations are a type of potential functions in three-dimensional disturbances, the discrete

method is ®nite difference and the spectra of cavity ¯ows were determined by means of the

simultaneous iteration method.23 We show the comparison of maximum real and corresponding

imaginary parts at Re� 200 with those of Ramanan and Homsy2 in Figures 4 and 5 respectively. We

see that the present results from the ®nite element method are very close to those from the ®nite

difference method at the lower Reynolds numbers (i.e. below Re� 400). It can be seen that the

stability results incorporating slight compressibility have good accuracy despite the coarse 21621

grid (in this work a 31631 grid was employed to determine the stability curve).

Figure 4. Comparison of real part versus wave number at Re� 200

Figure 5. Comparison of imaginary part versus wave number at Re� 200
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Other similar results at selected Reynolds numbers from Re� 100 to 1030 are listed in Table I.

Apart from some of the leading eigenvalues at the smaller Reynolds numbers and lower wave

numbers k, most of these dominant eigenvalues are Hopf modes followed by some real eigenvalues

and complex conjugate pairs and all modes are damped.

4.3. Dispersion relation

Figure 6 shows our principal results or�k;Re� for the maximum real part (growth rate) of

eigenvalues. Over the range of Reynolds numbers the growth rate in Figure 6 shows a critical

situation at Re� 1030 with k� 8. In Figure 7 it is found that the k� 8 mode crosses the imaginary

axis ®rst and is immediately followed by the k� 7 mode at a slightly higher Reynolds number. We do

not ®nd that the k� 5 mode crosses the imaginary axis in the discrete sequence of these cavity ¯ows

as was reported by Ramanan and Homsy.2 To obtain the critical Reynolds number for any given wave

number, we performed an interpolation for various wave numbers. We estimated the critical

Reynolds number as 1025 at a critical wave number of 7�6. In Table I it is also noted that the critical

mode is a Hopf mode. From Figure 8 the corresponding wave speed oi was estimated as 0�5, which

means that this mode has a non-dimensional wavelength of 0�84, close to unity (i.e. the width or

height of the cavity), and a dimensionless frequency (�oi=2p) of 0�08. This result is very close to the

observation of Aidun et al.,13 whose estimate of the critical Reynolds number is between 825 and

925. The critical Reynolds numbers in our cases are O(1000) for three-dimensional perturbation,

while they are O(7000) for two-dimensional modes computed by Poliashenko and Aidun, as reported

by Ramanan and Homsy.2 This implies that all the three-dimensional modes are signi®cantly more

unstable than the two-dimensional modes (k� 0).

In addition, Figure 9 presents the (a) real and (b) imaginary parts of the velocity disturbance in the

symmetry plane at Re� 1030 with k� 8 for the leading eigenvalue with the smallest growth rate.

4.4. Reconstruction of 3D ¯ow

In order to reproduce the three-dimensional ¯ow ®eld that corresponds to the critical mode, we

reconstructed the total three-dimensional ¯ow ®eld by combining the two-dimensional base ¯ow with

Table I. Leading eigenvalue (o) versus wave number (k) for various Reynolds numbers

k Re� 100 Re� 400 Re� 700 Re� 1030

1 ÿ0�52678 ÿ0�22312� 0�25754i ÿ0�12364� 0�26650i ÿ0�08452� 0�26675i
2 ÿ0�47243 ÿ0�12232 ÿ0�09801 ÿ0�08594� 0�51788i
3 ÿ0�52733 ÿ0�14580� 0�15299i ÿ0�08344� 0�17770i ÿ0�05827� 0�18274i
4 ÿ0�60984� 0�17367i ÿ0�13392� 0�30691i ÿ0�07771� 0�31785i ÿ0�07290� 0�31379i
5 ÿ0�70117� 0�29734i ÿ0�17752� 0�44775i ÿ0�10313� 0�58930i ÿ0�03714� 0�56215i
6 ÿ0�81605� 0�40938i ÿ0�14934� 0�61269i ÿ0�04978� 0�59220i ÿ0�02144� 0�53865i
7 ÿ0�94911� 0�50357i ÿ0�15101� 0�64775i ÿ0�07185� 0�55929i ÿ0�00030� 0�49996i
8 ÿ1�10263� 0�58012i ÿ0�22922� 0�67453i ÿ0�07235� 0�51982i ÿ0�00130� 0�47186i
9 ÿ1�27645� 0�64284i ÿ0�25985� 0�56246i ÿ0�08678� 0�49409i ÿ0�01155� 0�45308i

10 ÿ1�46985� 0�06940i ÿ0�28927� 0�53142i ÿ0�11243� 0�48171i ÿ0�03889� 0�45148i
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Figure 6. Growth rate versus wave number at various Re

Figure 7. Growth rate versus Re
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Figure 8. Wave speed versus Re

Figure 9. Velocity disturbance in symmetry plane at Re� 1030 with k� 8
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an arbitrary amount of the disturbance eigenvector. Considering the conjugate pairs of the

eigenspectrum, the reconstructed ¯ow is the following superposition of eigenvectors:

u � U ÿ 2
PNt

n�1

eo
n
r tfcos�kz��ûn

i cos�on
i t� � ûn

r sin�on
i t�� � i sin�kz��ûn

i cos�on
i t� � ûn

r sin�on
i t��g; �41�

v � V ÿ 2
PNt

n�1

eo
n
r tfcos�kz��v̂n

i cos�on
i t� � v̂n

r sin�on
i t�� � i sin�kz��v̂n

i cos�on
i t� � v̂n

r sin�on
i t��g; �42�

w � 2
PNt

n�1

eo
n
r tfcos�kz��ŵn

i cos�on
i t� ÿ ŵn

r sin�on
i t�� � i sin�kz��ŵn

r cos�on
i t� ÿ ŵn

i sin�on
i t��g; �43�

Figure 10. Evolution of reconstructed ¯ow planes at z� 0 and Re� 1030 with k� 8
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where the subscript `r' denotes the real part of an eigenvalue or eigenvector and the subscript `i'

denotes the imaginary part. In terms of the superposition using four pairs of eigenvectors, in the

critical mode (i.e. Re� 1030 with k� 8) including the leading pair (i.e. Nt� 4 in (41) and (42)), we

illustrate the temporal ¯ow patterns (real part) in the symmetry plane z� 0 for the critical mode in

Figure 10 (temporal mode). The three-dimensional effect for the spanwise midplane z� 0 is seen very

vividly. Among the temporal ¯ow ®elds from dimensionless time t� 0�0 to 4p it can be clearly

observed that oscillation of the primary vortex occurs in which the average dimensionless frequency

is close to 0�10. Similar three-dimensional ¯ow patterns can be found in Reference 24 based on

numerical simulation by a ®nite difference method and in Reference 25 by a ®nite element code (N3S

Figure 11. Views of reconstructed ¯ows in spanwise planes at t�p=24 and Re� 1030 with k� 8
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Figure 12. Schematic illustration of time-periodic vortex for three-dimensional cavity ¯ow

Figure 13. Evolution of velocity ®elds in y±z plane at x�L=2 and Re� 1030 with k� 2
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code). We plot further the reconstructed ¯ows in various spanwise planes at dimensionless time

t� p=24 for the critical mode in Figure 11 (spatial mode). It is found that the centreline of the

primary vortex oscillates spatially in a sinuous way in the spanwise direction. To sum up the above

description of the reconstructed ¯ow pattern, a schematic diagram of this three-dimensional structure

is depicted in Figure 12. It reappears that in the temporal mode, spiral-shaped vortices are

superimposed on the primary vortex and downstream secondary eddy (DSE) travelling from the

symmetry plane outward in the spanwise direction. The disturbance structure near the critical mode is

more visible in the DSE than in the primary vortex. The motion of these vortices is similar to the

rotation of a spring around its axis. These results have been proven in the experiments of Aidun et

al.13

To verify the existence of Taylor±GoÈertler-like (TGL) vortices in the spanwise plane, which are

frequently described in numerical simulations16,24,25 and experiments,13 we present the development

of the spanwise velocity ®elds in the symmetry plane for the critical mode in Figure 13. The spanwise

®elds consist of a mushroom-like structure travelling from the symmetry plane outward in the

spanwise direction. Similar structures were observed in ¯ow visualizations by Aidun et al.13 The

contours of the normal velocity (ox) are presented temporally in Figure 14. They show a cellular

structure which has a dimensionless wavelength of p=4 (Aidun et al.13 reported an average

wavelength of half the cavity width, while Kim and Moin16 showed numerically two pairs of TGL

Figure 14. Evolution of normal vorticity ®elds in y±z plane at x�L=2 and Re� 1030 with k� 2
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vortices per cavity width at Re� 1000). As the ordered cellular structure breaks down, a transition to

turbulence in the cavity ¯ow will occur.

5. CONCLUSIONS

In this paper we have investigated the linear stability of incompressible ¯uid ¯ow in a lid-driven

cavity by means of the assumption of a slight compressibility forced in the Navier±Stokes equations.

From the obtained results our conclusions are as follows.

1. It is reasonable to use a compressibility with physical meaning to reduce the singularity in the

generalized eigenproblem which occurs in the linear stability of incompressible ¯uid ¯ow.

2. The inverted Arnoldi method is very effective to detect the dominant parts of eigenvalues. In

addition, the ill-conditioning dif®culty in the eigenproblem can be effectively overcome by use

of a direct inverse solver with partial pivoting; a higher accuracy of eigenvectors can thus be

maintained.

3. The estimated critical results in this case are 1025 for the Reynolds number and 7�6 for the

critical wave number, for which a non-dimensional frequency of 0�8 is found. These results are

close to the observations of Aidun et al.13

4. By means of reconstruction of ¯ows in the critical mode, the three-dimensionality in the cavity

¯ow reappears. These results show that the TGL vortices play a key role in generating three-

dimensional ¯ow patterns in the cavity.

5. Because of the physical compressibility assumed in the perturbation equations in our cases, the

present method can also be used for the stability analysis of real compressible ¯uid ¯ows.
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